

Highly Selective FLT3 Kinase Inhibitor as anti-AML Drug

Institute of Pharmaceutics

Development Center for Biotechnology

Liao, Chu-Bin Ph.D

Shao-Zheng Peng Ph.D. Adam Deyao Wang Ph.D

Development Center for Biotechnology, DCB

RD/BD professionals serving as the innovation hub for early drug development.

1200+

The premium drug development entity and connected with 1200+ biotech of TW.

Founded in 1984, non-profit RD institution subsidized by the Ministry of Economic Affairs of Taiwan.

20+ out licensed assets and 5 Spin offs under out-licensing and co-development model.

DISCLAIMER This presentation has been prepared by the Development Center Biotechnology ("DCB") for informational purposes. This presentation contains information intended only for the person to whom it is transmitted. DCB represents and warrants that its disclosure of the information hereunder will not violate the rights of any third party, and as of the date hereof, it is not a party to any agreement or understanding, whether written or oral, with any third party which would prevent it from negotiating with other parties. This presentation is the property of DCB and shall not be distributed without DCB's prior written consent.

Project Team

Project Team

Unmet Need

Technology

Opportunity

IP/Dev Status

Summary/Contact

Τ

Project leader (pharmacologist) Chu-Bin Liao, Ph.D.

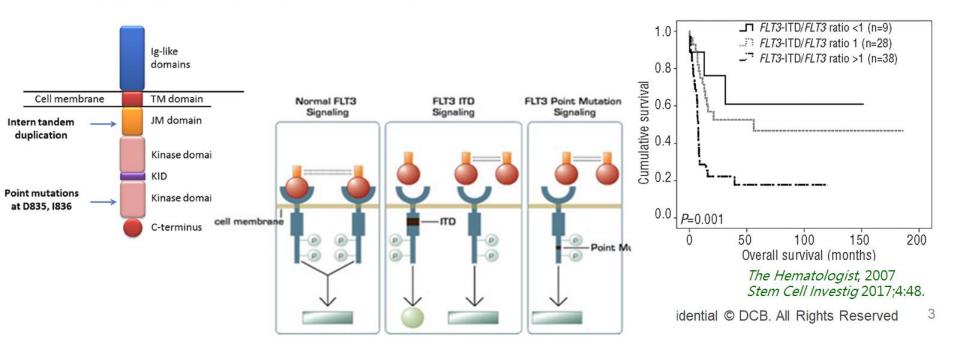
E

Chemistry leader Shao-Zheng Peng, Ph.D.

A

DMPK leader Yih-Chiao Tsai, Ph.D.

In vivo pharmacology leader Pei-Yi Tsai, Ph.D



Targeting FLT3 Mutation for AML Treatment

- FMS-like tyrosine kinase 3 (FLT3) is a common driver mutation occurred in approximately 30% of all AML case
 - The internal tandem duplication (ITD) insertion representing the most common type (~25%)
 - The tyrosine kinase domain mutation (FLT3 TKD) has a relative lower incidence (7–10%)
- FLT3-ITD or FLT3 TKD mutations trigger ligand-independent FLT3 signaling activation
- FLT3-ITD mutation is associated with poor prognosis in patients with AML
- FLT3 had been well characterized as "actionable" mutations in AML

FLT3 Inhibitors in AML Clinical Trials **DB**

- First-generation FLT3 inhibitors are broad-spectrum, multi-kinase inhibitors. Off-target activities cause toxicities and monotherapy generally demonstrated limited anti-leukemic activity.
- Next-generation FLT3 inhibitors are more specific, more potent, and have fewer toxicitiesassociated off-target effects. Monotherapy exhibits clinical benefit.

○First-generation FLT3 inhibitors

Drug name	Targets	Phase in AML		Drug name	Targets	Phase in AML
KW-2449	Aurora, ABL, FLT3	Withdrawn		Lestaurtinib (CEP-701)	JAK2, Trk & RTKs	Phase II
Tandutinib (MLN-518)	PDGFR, c-KIT & FLT3	Withdrawn		Sorafenib (Nexavar®)	RAF, VEGFR, c- KIT & FLT3	Phase III
Sunitinib (Sutent®)	KIT, KDR PDGFR & FLT3	Phase II		Midostaurin (Rydapt®)	PKC, Syk, Src & RTKs	Approval (Combine Chemo)

⊘Next-generation FLT3 inhibitors

Drug name	Targets	Phase in AML	Drug name	Targets	Phase in AML
Quizartinib (AC220)	Class III RTKs	Phase III	Crenolanib	PDGFR, FLT3-ITD & -TKD	Phase III
Gilteritinib (Xospata®)	FLT3/AXL	Approval (monotherapy)	PLX3397	Kit, <u>CSF-1R</u> , FLT3	Phase I/II

CR/CRh~21%, Hematological & Liver toxicity

Highly Selective FLT3 Kinase Inhibitor DCBCO1901

	Biochemical activity (Mean IC ₅₀ , nM)								
Compound	FLT3	FLT3-ITD	FLT3* (D835Y)	KIT	CSF-1R	PDGFRβ	AXL	Met	VEGFR2
Quizartinib	3	15	47	132	26	142	>10 μM	>10 μM	235
Gilteritinib	2	3	1	805	258	>3 μM	28	1008	606
DCBCO1901	0.3	1	0.5	>10 μM	>10 μM	>3 μM	>10 μM	>10 μM	>3 μM

^{*}FLT3 (D835 mutation): quizartinib-resistant activation loop mutation

- DCBCO1901 exhibits highly selective and potent inhibition activity against FLT3 and its mutants
- The kinase selectivity of DCBCO1901 is better than current benchmark Quizartinib and Gilteritinib

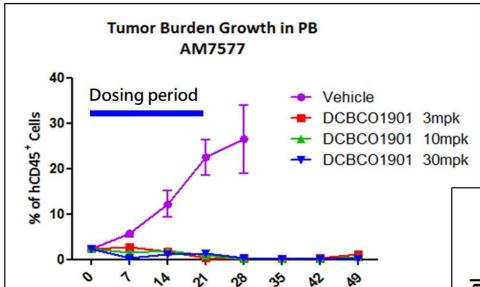
DCBCO1901 Exhibits FLT3-specific Cytotoxicity

Cancer	ncer Cancer Stimulating		Cytotoxicity (Mean IC ₅₀ , nM)		
cell line	Туре	growth factor	Target	Gilteritinib	DCBCO1901
MV4-11	Leukemia		FLT3-ITD	2	12
Molm-13	Leukemia		FLT3-ITD	24	38
Molm-14	Leukemia		FLT3-ITD	15	49
OCI-AML5	Leukemia	FL (10 ng/mL)	FLT3 Signal	16	78
OCI-AML5	Leukemia	M-CSF (10 ng/mL)	CSF-1R Signal	56	>10,000
OCI-AML5	Leukemia	GM-CSF (10 ng/mL)	GM-CSF Signal	340	>10,000
M-07e	Leukemia	SCF (10 ng/mL)	KIT Signal	425	>10,000
M-07e	Leukemia	IL-3 (10 ng/mL)	IL-3 Signal	1,084	>10,000
HCC827	NSCLC		EGFR (Exon19 del)	345	>10,000

Normal	Tissue	Call type	Cytotoxicity (Mean IC ₅₀ , nM)		
cell line	lissue	Cell type	Gilteritinib	DCBCO1901	
HUVEC	Vein	Endothelial cell	1,797	>10,000	
HAoSMC	Heart	Smooth muscle cell	3,168	>10,000	

The selective cytotoxicity of DCBCO1901 is superior to Gilteritinib

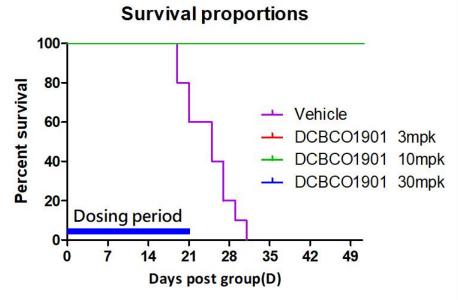
DCBCO1901 Can Achieve Complete Remission



Strain: Female NOD-SCID (n=10)

Model: AM7577 FLT3-ITD positive PDX model

Frequency: Once daily oral dosing for 21 days


Execution: CrownBio

The study was initiated at ~2% hCD45 positive cells detected in peripheral blood (PB).

No death or body weight loss was observed in all dosing groups after 28 days dose cessation

Days post group(D)

Competitiveness Analysis

Competitor	Problems of existing drug	Advantages of DCBC01901			
Midostaurin (Rydapt®)	 Broad spectrum (high off-target activity) Limited single-agent activity 	 Highly potent & highly selective (nM vs. μM range selectivity in protein-based and cell-based assay) Monotherapy & orally active 			
Quizartinib (Vanflyta®) Only in Japan	 QT prolongation Hematological adverse effect Short response duration (Secondary FLT3-TKD mutation mediated drug resistance) 	 Highly potent & highly selective High potency against FLT3 and FLT3 mutants 			
Gilteritinib (Xospata®)	 Toxic (Mortality at 20 mg/kg/day in rat, 5 mg/kg/day in dog in GLP tox study) Hematological and liver adverse effect Relative low CR (CR/CRh = 21%) 	 Highly potent & highly selective Well-tolerance in preclinical tox study (No death was noted in rat with 1000 mg/kg/day dosing for 14 repeated dose) 			

- Patent status US provisional patent had been filed
- Expected Progression Complete IND enabling studies within the end of 2020

IP/Dev Status

Project Team

Unmet Need

Technology

Opportunity

IP/Dev Status

Summary/Contact

IP

US Provisional Patent Applied (62/891,097)

Partnership

Exclusive License

Development status

Lead Validation PK/PD IND
Discovery Optimization TOX&CMC Ready

Summary and Contact

Project Team
Unmet Need
Technology
Opportunity
IP/Dev Status

Summary/Contact

DCB's FLT3 Inhibitor DCBCO1901

- Novel chemical structure distinguished from known FLT3 inhibitors (provisional patent filed)
- Highly potent against FLT3 and FLT3 mutants (overcome FLT3-TKD mutation mediated drug resistant)
- Highly selective
- Monotherapy & orally active
- Well-tolerance in preclinical tox study
- Kilogram level scale-up process had been done
- GLP tox study is in progress.

BD Contact

Adam Deyao Wang

deyao.wang@dcb.org.tw +886-2-77003800 #5240

Thank you for your attention

