

Anti-Globo H ADC against Cancer

Institute of Pharmaceutics

Development Center for Biotechnology

Presenter : Shih-Hsien Chuang Ph.D.
Adam Deyao Wang

Development Center for Biotechnology, DCB

RD/BD professionals serving as the innovation hub for early drug development.

1200+

The premium drug development entity and connected with 1200+ biotech of TW.

Founded in 1984, non-profit RD institution subsidized by the Ministry of Economic Affairs of Taiwan.

20+ out licensed assets and 5 Spin offs under out-licensing and co-development model.

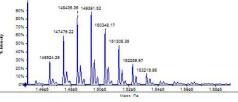
DISCLAIMER This presentation has been prepared by the Development Center Biotechnology ("DCB") for informational purposes. This presentation contains information intended only for the person to whom it is transmitted. DCB represents and warrants that its disclosure of the information hereunder will not violate the rights of any third party, and as of the date hereof, it is not a party to any agreement or understanding, whether written or oral, with any third party which would prevent it from negotiating with other parties. This presentation is the property of DCB and shall not be distributed without DCB's prior written consent.

Project Team

A

Project leader

Simon Shih-Hsien Chuang, Ph.D Yi-Jen Chen, Ph.D. Synthetic Chemistry & Conjugation

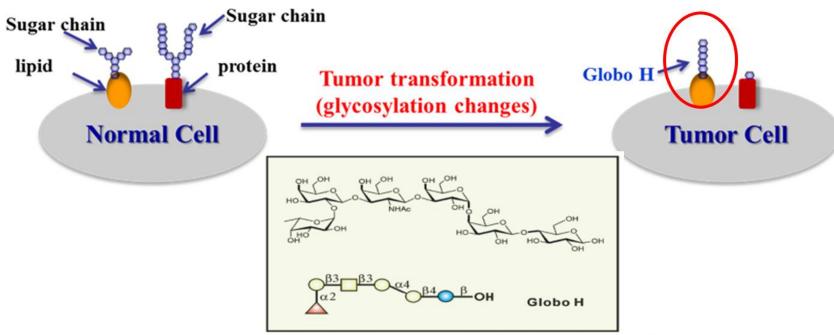

Biology

Shih-Chong Tsai, Ph.D.
Monoclonal Antibody
Ying-Shuan E. Lee, Ph.D.
Cytotoxicity
Chuan Lung Hsu, Ph.D.
Binding & Internalization

DMPK

Tzungjie Yang, Ph.D. LC/MS Characterization

In vivo Pharmacology


Mei-Ling Hou, Ph.D Animal Models

Globo H : A Potential Target against Cancer

Globo H is a glycolipid antigen highly expressed in many cancer cell surface.

Fuc $a1 \rightarrow 2Gal\beta 1 \rightarrow 3GalNAc\beta 1 \rightarrow 3Gala 1 \rightarrow 4Gal\beta 1 \rightarrow 4Glc$

Tumor	Brain	Lung	Breast	Mouth	Esophagus	Stomach	Liver
Cell-lines	6/17	13/20	14/23	11/13	2/2	6/6	9/10
Tumor	Bile duct	Pancreas	Colon	Kidney	Cervix	Ovary	Prostate
Cell-lines	3/5	6/8	6/7	5/6	1/4	2/9	1/4

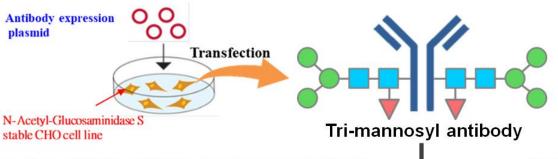
Antibody-Drug Conjugate (ADC)

Antibody

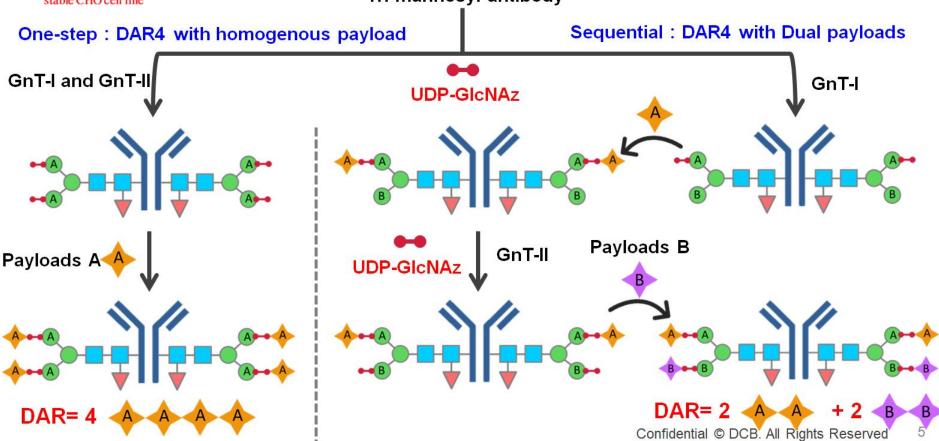
Specific for a tumorassociated antigen that has restricted expression on normal cells.

Cytotoxic agent

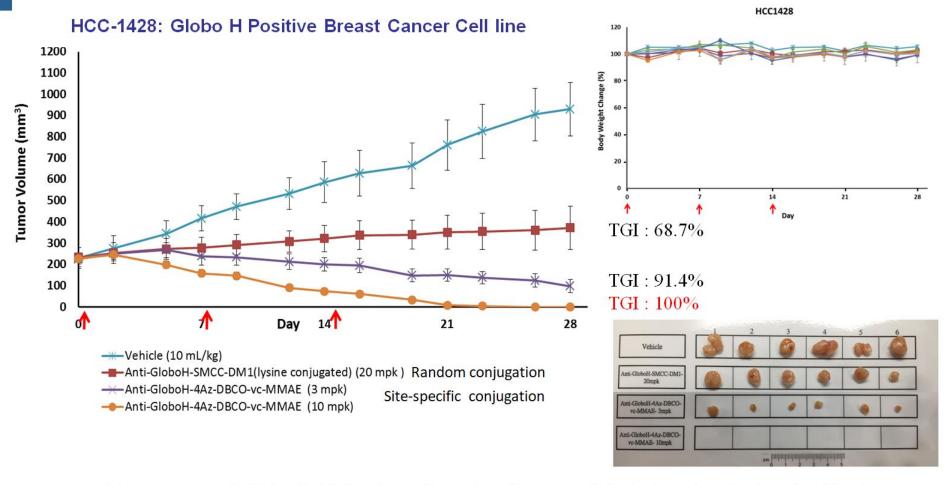
Designed to kill target cells when internalized and released.


Linker

Attaches the cytotoxic agent to the antibody. Newer linker systems are designed to be stable in circulation and release the cytotoxic agent inside targeted cells.


References: 1. Carter PJ et al. Cancer J. 2008;14(3):154-169. **2.** Senter PD. Curr Opin Chem Biol. 2009;13(3):235-244. **3.** Polson AG et al. Cancer Res. 2009;69(6):2358-2364.

Tri-mannosyl ADC Platform


GnT-I: N-Acetyl glucosamin transferase I GnT-II: N-Acetyl glucosamin transferase II UDP-GlcNAz: Azido-N-acetylglucosamine

Summary of Trimannosyl ADC Platform

IP position	WO2018126092A and TW patent number: 106146600	
UDP-GlcNAz transfer percentage	Over 95%	
Payload conversion rate	Over 95% for homogeneous and 90% for dual payloads	
Yield	about 60% for homogeneous payload	
Optimal temperature	Not determined but the room temperature is satisfied	
Conversion enzyme activity	GnT-1 (limited step)= 39mg antibody /hr/mg (UDP-GlcNAZ as substrate)	
Scale	10 g level (2020)	
Tri-mannosyl antibody production CHO cell line	Over 95% purity of Tri-mannosyl antibody .	
GnT-1 and GnT-2 production	CHO cells over-expressed both enzymes are under way.	

Trimannosyl anti-Globo H ADC showed Great Antitumor Activity in 3 mpk

- Trimannosyl anti-Globo H ADCs showed great antitumor activity in 3 mpk and 10 mpk without any death or body weight loss.
- The six mice in trimannosyl anti-Globo H ADC 10 mpk group showed complete tumor remission and no any tumor regression after 60 days.
 Confidential © DCB. All Rights Reserved

Early Toxicity Study of Anti-Globo H ADC

Group	Treated	No. of Animals (Female/BALB/c)
Blank Control	Day 0	3
Trimannosyl anti-Globo H-4MMAE	30 mg/kg IV Day 5	3
Trimannosyl anti-Globo H-4MMAE	30 mg/kg IV Day 12	3

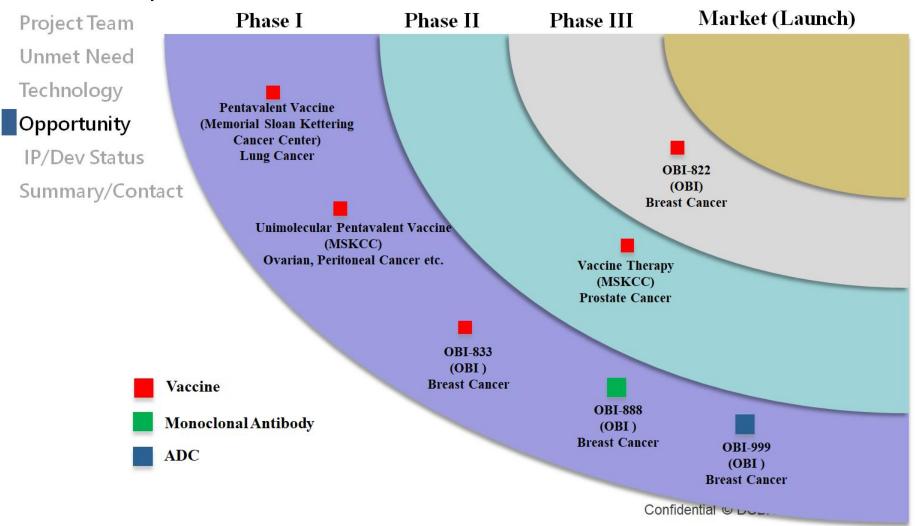
Body Weight:

The results showed no body weight loss on ADC Groups

Organ Weight (Heart, Lung, Liver, Spleen, Kidney):
 The results showed no organ weight loss on ADC Groups

Hematology:

The results showed WBC slightly decreased caused by cytotoxic drug. The results showed no effect on RBC, HGB, HCT, MCV and MCH.


Liver function:

The results showed ALT slightly increased at Day 5 and recovered at Day 12. The results showed AST, LDH slightly increased.

Competitive Landscape of Globo H Products

Globo H related products in clinical trials mainly on vaccines. However, anti-Globo H ADC expected more effective and clear MOA on cancer treatment than vaccines.

IP Protection over Anti-Globo H mAb/ADC

Title	App No. and Filing (Priority) Date
HUMANIZED ANTIBODIES AGAINST GLOBO H AND USES THEREOF IN CANCER TREATMENTS	PCT/US2018/034469 TW Pat. App. No. 107117759 (Priority Date: 2017.05.24)
ANTIBODY-DRUG CONJUGATES CONTAINING ANTI-GLOBO H ANTIBODIES AND USES THEREOF	PCT/US2018/037912 TW Pat. App. No. 107120867 (Priority Date: 2017.06.15)

Partnership

Exclusive License

- Co-development
- Other Ways of Partnership

Development status

Summary and Contact

DCB's anti-Globo H ADC

- DCB's anti-Globo H ADC showed high affinity, fast internalization, good in vitro cytotoxicity.
- DCB's anti-Globo H ADC showed great tumor growth inhibition (>90%, 3 mg/kg) in HCC-1428 animal models without any body weight loss.
- DCB's anti-Globo H ADC can be prepared reproducibly at gram scale.

BD Contact

Adam Deyao Wang

deyao.wang@dcb.org.tw +886-2-77003800 #5240

Thank you for your attention

